中文  |   English

药剂学

当前位置:首页>>师资队伍>>博士生导师>>药剂学

王静博士-教授

发布时间:2020-11-10   浏览次数:0

 


王静,教授,8883net新浦京游戏副院长,博士生导师,8883net新浦京游戏医学与健康研究院独立PI。研究方向集中于药物超分子体系的筛选、纳米材料的生物应用、基于肿瘤微环境智能响应性释放的载药体系的构建。主持国家自然科学基金、河北省自然基金多项、河北省科技厅重大支撑课题、中国博士后基金和河北省博士后基金、河北省“高校百名创新人才”支持计划研究项目、河北省自然科学基金“生物医药联合基金”重点项目。研究成果获河北省科技进步二等奖一项(第一)、三等奖一项(第一)。河北省优秀教师,河北省优秀硕士论文指导教师,8883net新浦京游戏优秀教师和优秀共产党员。发表第一作者和通讯作者SCI论文30余篇。

主持科研项目情况

1. 2008-2010,顺铂磁性热敏性脂质体的分子设计和组装(C2008001072),河北省自然基金面上项目负责人,经费5.0万。

2. 2011-2012,河北省博士后基金重点资助:“药物共晶的分子设计和筛选”,到位经费5.0万。负责人

3. 2011-2012年,第49批中国博士后科学基金面上项目 “药物共晶设计和筛选模型的建立”,编号20110490983,到位经费3.0万,负责人。

4. 2012-2016年,科技厅科技支撑重大课题:阿折地平药物共晶的设计和筛选(12276402D),到位经费25万,负责人。

5. 2013-2015年,国家自然基金青年基金:药物分子多无定型态及其与多晶态相互转化的太赫兹谱研究(81202504),资助经费23万,负责人。

6. 2013-2015年,河北省自然科学基金,石药集团医药联合基金优先资助:亲水性抗癌药顺铂磁靶向固态脂质纳米粒的分子设计(H 2013206040),资助经费5万,负责人。

7. 2017-2019年, 河北省自然科学基金:基于顺铂不同时相联合给药磁性控释微球的设计和组装(H2017206214),资助经费:6万,负责人

8. 2017-2019年,河北省高校百名优秀创新人才支持计划(SLRC2017047),资助经费:20万。

9. 2020.01-2022.12,河北自然科学基金(生物医药联合基金):基于线粒体靶向及联合给药策略的化疗-光热“多靶标、多模式”的药物递送体系研究(H2020206416),资助经费:30万,负责人。

发表论文情况(*代表通讯作者)

1. Wang J., Deng T., Dai Y.J., Study on the processes and mechanism of the formation of Fe3O4 at low temperature, J. Alloys Compounds, 2005, 390(1-2): 127-132.

2. Wang J., Deng T., Dai Y.J., Comparative study on the preparation procedures of cobalt ferrites by aqueous processing at ambient temperatures, J. Alloys Compounds, 2006, 419(1-2): 155-161.

3. Wang J., Deng T. and Yang C.Q., Synthesis of gallium bearing magnetic particles from aqueous solution: influence of mixing procedure of initial solution and the ratio of Ga/Fe, J. Alloys Compounds, 2008, 450(1-2): 276-283.

4. Wang J., Deng T., Lin Y.L., Yang C.Q., and Zhan W.H., Synthesis and characterization of CoFe2O4 magnetic particles prepared by co-precipitation method: Effect of mixture procedures of initial solution. J. Alloys Compounds, 2008, 450(1-2): 532-539.

5. Xu X.J., Wang J*., Yang C.Q and Wu H.Y., Sol-gel formation of γ-Fe2O3/SiO2 nanocomposites: Effects of different iron raw material. J. Alloys Compounds, 2009, 468(1-2): 414-420.

6. Wang J*., Ding L.Y. and Yang C.Q., Three concomitant polymorphs of 1: 1 4, 4′-dihydroxybenzophenone/1, 2-bis (4-pyridyl)-ethylene: applications of hydrothermal method in searching polymorphs, Cryst. Eng. Comm, 2007, 9(7): 591-594.

7. Wang J., Deng T. and Yang C.Q., Studies on the behavior of Co2+ and Zn2+ in the conversion from FeOOH to magnetite in NH3 (NaOH)-Fe2+, Co2+-H2O medium under hydrothermal conditions, Hydrometallurgy, 2008, 92(3-4): 107-114.

8. Wang J., Wu H.Y., Yang C.Q. and Lin Y.L., Room Temperature Mossbauer Characterization of Ferrites with Spinel Structure. Material Characterization, 2008, 59(12): 1716-1720.

9. Yang C.Q. and Wang J*., Deliberate design of an acentric diamondoid metal-organic network, J. Solid State Chem., 2011, 184(9): 2485-2489.

10. Wang J. and Wang Y.L., 1-Diphenylmethyl-4-[3- (4-fluorobenzoyl) propyl] piperazine-1,4-diium dichloride monohydrate, Acta Cryst, 2011, 67(10): o2719-o2719.

11. Yang C.Q., Zhang Z.W., Zeng Y.L., Wang J*. and Ma B.Q*., Structures and characterization of m-nisoldipine polymorphs, Cryst. Eng. Comm., 2012, 14(7): 2589-2594.

12. Wang L., Yang C.Q. and Wang J*.., Effects of loading procedures of magnetic nanoparticles on the structure and physicochemical properties of cisplatin magnetic liposomes, J Microencapsul, 2012, 29(8): 781-789.

13. Li D., Wang M., Yang C.Q., Wang J*. and Ren G.D., Solid State Characterizations and Analysis of Stability in Azelnidipine Polymorphs, Chem.Pharm.Bull., 2012, 60(8): 995-1002.

14. Yang C.Q., Xu X.J., Wang J*. and An Z.Q., Use of the Co-grinding Method to Enhance the Dissolution Behavior of a Poorly Water-Soluble Drug: Generation of Solvent-Free Drug?CPolymer Solid Dispersions, Chem.Pharm.Bull., 2012, 60(7): 837-845.

15. Liu J., Wang L., Wang J*. and Zhang L.T., Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe3O4 nanoparticles, Mater Res Bull, 2013, 48(2): 416-421.

16. Yang C.Q., Ren T.K., Wang J*., Wang Y.L.* and Tao X.L., Thermodynamic stability analysis of m-nisoldipine polymorphs, J.Chem.Thermodynamics, 2013, 58: 300-306.

17. Lian W.G., Lin Y.L., Wang M., Yang C.Q. and Wang J*., Crystal engineering approach to produce complex of azelnidipine with maleic acid. Cryst. Eng. Comm., 2013, 15(19): 3885-3891.

18. Zhao S., Yang C.Q. and Wang J*., A novel solvethemal method for the preparation of magnetic monodisperse Fe3O4 nanoparticles II: high-surface-activity ferrihydrite used as precursor, Mater Res Bull, 2013, 48(2): 416-421.

19. Lin Y.L., Yang H., Yang C.Q. and Wang J*., Preparation, Characterization, and Evaluation of Dipfluzine-Benzoic Acid Co-crystals with Improved Physicochemical Properties. Pharm. Res. 2014, 31(3): 566-578.

20. Zhao S., Zhang Y.L., Han Y.Z., Wang J*. and Yang J., Preparation and Characterization of Cisplatin Magnetic Solid Lipid Nanoparticles (MSLNs): Effects of Loading Procedures of Fe3O4 Nanoparticles, Pharm. Res., 2015, 32(2): 482-491.

21. Liu H., Zhang Y.L., Han Y.Z., Zhao S., Wang L., Zhang Z.X., Wang J*. and Cheng J.X., Characterization and cytotoxicity studies of DPPC:M2+ novel delivery system for cisplatin thermosensitivity liposome with improving loading efficiency, Colloid Surface B, 2015, 131: 12-20.

22. Han Y.Z., Pan Y.H., Lv J., Guo W. and Wang J*., Powder grinding preparation of co-amorphous β-azelnidipine and maleic acid combination: Molecular interactions and physicochemical properties, Powder Technology, 2016, 291: 110-120.

23. Yang C.Q., Lv J., Lv T., Pan Y.H., Han Y.Z., Zhao S. and Wang J*., Metal ion-assisted drug-loading model for novel delivery system of cisplatin solid lipid nanoparticles with improving loading efficiency and sustained release, J. Microencapsul., 2016, 33(3): 292-298.

24. Pan Y.H., Pang W.Z., Lv J., Wang J*., Yang C.Q., and Guo W., Solid state characterization of azelnidipine coxalic acid co-crystal and co-amorphous complexes: The effect of different azelnidipine polymorphs, J. Pharm. Biomed. Anal., 2017, 138: 302-315.

25. Pang W.Z., Lv J. Du S., Wang J.J., Wang J*. and Zeng Y.L.*, Preparation of curcumin-piperazine coamorphous phase and fluorescence spectroscopic and density functional theory simulation studies on the interaction with bovine serum albumin, Mol. Pharmaceutics, 2017, 14(9): 3013-3024.

26. Yang C.Q., Guo W., Lin Y.L., Lin Q.Q., Wang J.J., Wang J*. and Zeng Y.L.*, Experimental and DFT simulation study of a novel felodipine cocrystal: Characterization, dissolving properties and thermal decomposition kinetics, J. Pharm. Biomed. Anal, 2018, 154: 198-206.

27. Guo W., Du S., Lin Y.L., Lu B., Yang C.Q., Wang J*., Zeng Y.L.*, Structural and computational insights into the enhanced solubility of dipfluzine by complexation: salt and salt-cocrystal, New J. Chem., 2018, 42(18): 15068-15078.

28. Du S., Li W.S., Wu Y.R., Fu Y., Yang C.Q. and Wang J*., Comparison of the physical and thermodynamic stability of amorphous azelnidipine and its coamorphous phase with piperazine, RSC Adv., 2018, 8(57): 32756-32764.

29. Zhu Y.Y., Jia S.P., Zheng J.F., Lin Y.L., Wu .Y.R. and Wang J*., Facile synthesis of nitrogen-doped graphene frameworks for enhanced performance of hole transport material-free perovskite solar cells, J. Mater. Chem. C, 2018, 6(12): 3097-3103.

30. Zhu Y.Y., Wang J.*, A non-enzymatic amperometrac glucose sensor based on the use of graphene frameworks-promoted ultrafine platinum nanoparticle, Microchimica Acta,0026-3672,2019, 186, 538-547.

31. Xue N., He B., Jia Y., Yang C., Wang J. *, Li M. *. The mechanism of binding with the α-glucosidase in vitro and the evaluation on hypoglycemic effect in vivo: Cocrystals involving synergism of gallic acid and conformer. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 156, 64-74.

32. Jia Y., Zhang L., He B., Lin Y., Wang J.*, Meng Li*. 8-Hydroxyquinoline functionalized covalent organic framework as a pH sensitive carrier for drug delivery. Materials Science and Engineering: C 2020, 117, 111243.

33. Zhu Y. *, Kang K., Jia Y., Guo W., Wang J.*, General and fast synthesis of graphene frameworks using sugars for high-performance hydrogen peroxide nonenzymatic electrochemical sensor. Microchim. Acta, 2020, 187, 669. 

32. Zhu Y. *, Wang Y., Kang K., Lin Y., Guo W., Wang J.*, A nickel–cobalt bimetallic phosphide nanocage as an efficient electrocatalyst for nonenzymatic sensing of glucose, Microchim. Acta 2020, 187, 100.

33. Xue N., Jia Y., Li C., He B., Yang C. *, Wang J.*, Characterizations and Assays of α-Glucosidase Inhibition Activity on Gallic Acid Cocrystals: Can the Cocrystals be Defined as a New Chemical Entity During Binding with the α-Glucosidase? Molecules, 2020, 25, 1163.

34. Li C., Du P., Zhou M., Yang L., Zhang H., Wang J.*, Yang C. *, Spectroscopic methodology and molecular docking studies on changes in binding interaction of felodipine with bovine serum albumin induced by cocrystallization with β-resorcylic acid, Chemical & Pharmaceutical Bulletin, 2020, 68, 946-953.

35. Guo W., Li C., Du P., Wang Y., Zhao S., Wang J. *, Yang C.*, Thermal properties of drug polymorphs: A case study with felodipine form I and form IV, Journal of Saudi Chemical Society, 2020, 24: 474-483.

36. Chen Y. #, Zhu Y. #, Zhao Y., Wang J.*, Fluorescent and colorimetric dual-response sensor based on copper (II)-decorated graphitic carbon nitride nanosheets for detection of toxic organophosphorus. Food Chem. 2021, 345, 128560. 

37. Chen Y.#, Zhu Y.#, ZhaoY., Wang J.*, Li M.*. Insight into CuX (CuO, Cu2O, and CuS) for enhanced performance of CuX/g-C3N4 nanocomposites-based acetaminophen electrochemical sensors, Microchemical Journal, 2021, 163, 105884.